

Finding the optimal route for new power transmission lines with a 3D Decision Support System

08/09/2019 RGI Webinar

Joshu Jullier (Swissgrid) & Joram Schito (ETH Zurich)

Swissgrid – the most important tasks

PLUS

formation

ngineering

Swissgrid...

operates the transmission grid
is responsible for the highest grid level
maintains the substations and lines
plans and develops the entire transmission grid
ensures the stability of the grid
works closely together with European

transmission grid operators

Bottlenecks in the transmission grid

Drivers for grid expansion in Switzerland

New large power plants

For example, construction of a new pumped storage power plant

International network

Increasing international energy exchange can lead to grid overload

Supply of downstream grids

New connection requests can lead to congestion

engineering

The grid has to be modernized and expanded

- By 2025, around CHF 2.5 billion . will be invested in expanding and maintaining the grid
- Chamoson Chippis (1)
- Chippis Bickigen (2)
- 3 Pradella – La Punt
- 4 Chippis – Lavorgo
- (5) Beznau – Mettlen
- 6 Bassecourt – Mühleberg
- (7)Magadino
- 8 Génissiat – Foretaille
- (9) Mettlen – Ulrichen
- (10)All'Acqua - Maggia Valley - Magadino
- existing
- 380 kV
- 220 kV
- Switching substations
- O+O Switching substations with transformers

Line projects

Why?

engineering

Main problems of overhead lines (OHL)

Main objectives of the project

- Find the solution which has the highest acceptance among all stakeholders
- Multi-criteria decision analysis (MCDA) allows to take the interests of different stakeholders in the decision process into consideration
- Increase acceptance by realistic 3D visualizations

Hzürich

Project team

PLUS

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Energie BFE Swiss Federal Office of Energy SFOE 2018-2020:

2014-2017:

AUSTRIAN POWER GRID STROM BEWEGT

BKW swissgrid

www.gis.ethz.ch geoinformatior engineering

www.plus.ethz.ch

SCCER _ FU Shaping the FUtuRe SwIss Electrical InfraStructure

How disruptive?

How risky?

CAUTION AVALANCHE DANGER

technical feasibility

environment & landscape

urban planning

Main questions

Main questions : How can... we achieve realistic modeling?

Main questions : How can... overhead lines be combined with earth cables?

The 3D DSS project

The 3D DSS project

How our 3D Decision Support System (3D DSS) works

How the most feasible corridor is calculated

Have a look at this video:

https://www.youtube.com/watch?v=PDWy_unkKy8&t=4s

Current results and work

Decision-makers want to decide between few route alternatives, not thousands or millions

Which parameters matter most?

interactions

Recent results we use for improving the decision model

 The continuous boundary model achieved best results and reflects real conditions best

Recent results we use for improving the decision model

- The continuous boundary model achieved best results and reflects real conditions best
- Simple Additive Weighting achieved best results and is easy to understand

Recent results we use for improving the decision model

- The continuous boundary model achieved best results and reflects real conditions best
- Simple Additive Weighting achieved best results and is easy to understand
- The utility function with linear increase achieved best results (perhaps because users expect linearity)

Study conducted with 10 planning experts (2019)

Study conducted with 10 planning experts (2019) Experts agreed reconsidering critical sections of proposed lines

Study conducted with 10 planning experts (2019) Our 3D DSS fulfills experts' expectations well

Study conducted with 10 planning experts (2019) Our 3D DSS fulfills experts' expectations well

45

engineering

Study conducted with 10 planning experts (2019) Graphical outputs that support decision-making

Indicators Γ_i compared between participant A and the 3D DSS solution based on the scenario *Swissgrid* Γ₁: protect

Study conducted with 10 planning experts (2019) Graphical outputs are helpful, however, their effect is limited

Areas of high resistance: Where are they located?

Firmendb.de

Main question: Where should transition structures be built?

Compute a combined corridor (earth cable + overhead line) Novel approach

- Determine areas of a high stress level in which an earth cable would be relieving.
- At the borders of these areas, determine appropriate places for a transition building.
- Compute the optimal earth cable path between the two transition buildings.
- Between the transition buildings and the start and end point, compute an overhead line.

Impressum

ETH Zurich Institute of Cartography and Geoinformation Stefano-Franscini-Platz 5 8093 Zurich Switzerland

www.ethz.ch

Editor: Chair of Geoinformation Engineering Layout: Joram Schito and Joshu Jullier

© ETH Zurich, August 2019

