

How To Optimize Transmission Line Paths and Corridors with Geographic Information Systems and Multi-Criterial Decision Analysis

26.09.2016, Klagenfurt

Research in Progress Presentation at the PhD Workshop "Energy Informatics"

Agenda

1. Project Background
2. Procedure and MCDA Concept
3. Current Results
4. Future Outlook
5. Demonstration
6. Discussion

GHzürich

Project Background

Problem: The power grid must be extended

Problem: The power grid must be extended and new paths must be found because the laws changed since the existing grid was built

- How can the best path be found?
- How can current legal specifications be considered?
- e.g. minimum distances to buildings
- What defines the best path? Who defines this?
- Who is involved in the decision process? How will different opinions/solutions be considered?
- Where should the future power line be built: Here, there, or there?
- Decision Problem: Solved by Multi-Criteria Decision Analysis (MCDA)
- Spatial Problem: Solved by aver Geographic Information System (GIS)

What are Multi-Criteria Decision Analysis (MCDA) and Geographic Information System (GIS)?

- MCDA is a set of strategies that allow decision-makers to find the optimal solution within a set of different criteria, and thus, of different alternatives.

- GIS is a software that allows modeling, administration, processing, analysis, and presentation of spatial data.

MCDA combined with GIS: Data model, decision model, and weighting define the outcome

This is our product: a Decision Support System (DSS) in which a power grid can be planned in 3D and allows

PLUS

Our study area: We focus on the grid 380 kV expansion in Switzerland and Austria

바Hürich

Introduction to the goals, the context, and the problems

Define data, start, end, constraining points, voltage, and weights

Computation of cost surface, least cost corridor, and least cost path

Visualize the result in 3D, including monetary and ecosystem costs

How the MCDA model is built

Objective

PLUS

1. Define an objective
2. Define factors relevant to achieve the objective
3. Define measurable attributes for each factor that state its goodness of achievement

- One set of attribute weights = one alternative
- Every possible attribute weight combination = Every possible alternative
- STOP!! A few alternatives are sufficient for comparison

The main objective determines five factors to consider

High-level objective

- Find the least cost path for a new power line according to the set weights

Landscape

Factors to consider

- Technical and natural constraints
- Impact on landscape
- Impact on environment
- Impact on the citizens' perception
- Costs

Environment

From each factor, measureable attributes are derived

Factor to consider

- Technical and natural constraints

Operationalize the

attributes

- Slope / relief / sag
- Distance between transmission towers
- Geology, pedology
- Natural hazards

Factor to consider

- Impact on landscape

Operationalize the

 attributes- Landscape conservation laws
- Affected land by considering its vulnerability
- Especially wetlands, dry grasslands, geotopes

From each factor, measureable attributes are derived

Factor to consider

- Impact on environment

Factor to consider

- Impact on the citizens' perception

Operationalize the

 attributes- Animal protection regulations
- Animal habitats
- Special: Bird protection
- Vulnerable ecosystems

Operationalize the

attributes

- Distance to settlements
- Distance to roads
- Counteract urban sprawl by bundling with linear infrastructure
- Quiet zones
- Visibility

From each factor, measureable attributes are derived

Factor to consider

- Costs

Operationalize the attributes

- Effective monetary costs for access and construction
- Affected land by considering its vulnerability
- Impact on environment and landscape

All factors must be balanced by law

Five factors are considered in the MCDA

Restricted Areas
Constraint Values

Independent Variables

Costs in Terms of
Money and
Ecosystem Impact

Dependent Variables
$f(x)=\ldots$

Goal: Develop a communication platform for all stakeholders to reduce the objections

citizens can use right of veto to impede a project
 instead

```
The 3D DSS...
- saves time
- increases citizens' acceptance
- offers realistic visualizations in 3D
- counteracts the urban sprawl
```


foster transparency

allow communication between the stakeholders

Procedure: Project work packages over 3 years

- Examine needs, collect data and create a geodatabase structure
- Develop an algorithm for routing, transmission tower positioning, and cost estimation

- Develop a web-based, collaborative 3D DSS, and integrate the algorithm of WP2
- Conduct interviews with stakeholders and evaluate case studies

PLUS

Data Mining = Workpackage 1

- Examine needs, collect data and create a geodatabase structure
- Steps
- Create a data handling concept
- Collect, analyze, and standardize data
- Create a guideline

Result: Definition of a model to preprocess and to structure data using 4 factors and 15 subfactors

Factor	Subfactors
Environment protection	Ecosystems supporting biodiversity Protective habitats Waters protected by water act
Landscape conservation	Landscapes protected by law Conservation of agricultural land Natural monuments Visibility of power line
	Anti-sprawl by linear infrastructure
Urban planningUrban areas Recreational and tourism areas	
	Areas of high cultural value Visibility
Natural	Natural hazards Slope
constraints	Building ground

Glizürich

Algorithm Development

Results of Workpackage 2

Algorithm Development = Workpackage 2

- Develop an algorithm for routing, transmission tower positioning, and cost estimation
- Steps
- Develop a weighting method using MCDA
- Develop optimization methods

This is how the MCDA works: First, preprocess the data

1. Take the files and split them based on their main attribute.
2. Reduce them to 15 subfactors and store them in a database.

This is how the MCDA works: Next, the factors and subfactors are weighted

4 factors to weight

15 subfactors to weight define the subfactor's resistance

1 output

a few minutes

How the Least Cost Corridor and the Least Cost Path are computed

Introduction to the precondition, to the theoretical framework and to the procedure
PLUS

How a cost surface is built

How a cost surface is built

How a cost surface is built

GIHzürich

How a cost surface is built

GIHzürich

How a cost surface is built

GIHzürich

How a cost surface is built

How a cost surface is built

캐zürich

How a cost surface is built

GIHzürich

How a cost surface is built

Proximity Effect

Why the consideration of a buffering concept makes transmission line modeling more realistic
PLUS

Would you be bothered if a power line was built beside your beautiful castle?

Would you be bothered if a power line was built beside your beautiful castle?

Would you be bothered if a power line was built beside your beautiful castle?

Demonstration

Basemap
\square LCP
\square Lakes

Cell Friction

Integrating the proximity concept based on Tobler's First Law of Geography

PLUS

Choosing a model with sharp boundaries
—— Least Cost Path

- Possible Pylon Positions within the Least Cost Corridor

Cell Friction on Cost Surface

Maximum value chosen

Simple additive weighting, by reducing weighting the more frequent a cell overlaps

A look at the curve valuation of the visibility impact

- How probable is it to see a specific location 30 m above the ground if observers stay more often in area A than area B ?
- Integrate different valuations:
- linear
- exponential $-e^{c \cdot p}+q=\operatorname{maxVal}$
- logarithmic $-c \cdot \ln (p)+q=$ maxVal
- x-axis: distance / y-axis: visual impact
- done by numeric method
- First results: no big difference. More structured test are needed.

ㅋHzürich

Develop 3D DSS Platform

Results of Workpackage 3

Develop 3D DSS Platform = Workpackage 3

- Steps

- Set up interactive, web-based solution
- Visualize LCC\&LCP generically using Google Earth
- Develop a web-based, collaborative 3D DSS, and visualize the results of WP2

Result: netzausbau.ethz.ch works

\rightarrow Are you ready for the demonstration?

PLUS

Key concept: Transmission tower siting

- A simple approach calculates the position of the transmission towers.
- However, it must be optimized since the solutions are not realistic. They do not yet consider the DEM.
- A master student is elaborating an method to optimally site transmission towers.

Imagine an application in which a power grid could be planned in 3D and allows

PLUS

Thank you for your attention

